Research projects

OBerA - Optimization of processes and tooling machines

Contents

Optimization of processes and tooling machines by supply, analysis and variance analysis of production data (OBerA); research initiative through the Free State of Bavaria for medium-sized enterprises for support in digitalization. The project is very practice-oriented and represents an overarching cooperation of five medium-sized producers, two machine operators, an ERP specialist company and FHWS. Its primary goal is to develop guidelines for Bavarian medium-sized enterprises. To this end, the most urgent problems of the project partners with regard to digitalization are dealt with; these use cases and their solutions are scientifically evaluated and later result in the guideline as practical solutions. The results are intended to help other medium-sized companies to achieve a practicable approach to digitalization and to successfully implement the solutions shown in their own companies.

Project partners/sponsors

FHWS, Siemens AG, Kritzner Metalltechnik GmbH, Pabst Kombonentenfertigung GmbH, Franken GmbH & Co. KG, Heisab GmbH, Heitec AG /Sponsors: Bavarian Ministry of Economic Affairs, Regional Development and Energy / Project owner VDI VDE IT

Contact

Prof. Dr. Hartmann

Project duration

Start: 1 April 2018; end (presumably): 1 April 2021

Increasing the efficiency of automated production lines through optimizing simulation models and methods

Contents

In the area of fully automated production of injection nozzles, a six-month project was carried out in cooperation with Bosch, which involved optimization through data-supported predictive maintenance and predictive quality management. Through the use of on-the-edge methods from the areas of machine learning and artificial intelligence, the operational processes could be sustainably improved on the basis of the analysis of real-time data.

Project partners/sponsors

Bosch

Contact

Prof. Dr. Kurt Schwindl

Year of termination

2018

Additional Information

Article in the Mainpost from 28 July 2015 (available only in German)

Digitalisierung in der nachhaltigen Behälteraufbereitung (DIBCO)

Inhalt

Mehrwegbehälter sind ein wichtiger Baustein für eine nachhaltige Industrieproduktion. Sie durchgehen einen ähnlichen Zyklus wie haushaltsübliche Mehrwegflaschen: Spezielle Anlagen bereiten gebrauchte Boxen oder Container so auf, dass sie wiederverwendet werden können. Der Aufbereitungsprozess ist bisher nur in Ansätzen automatisiert. Das Projekt DIBCO („Digitales Behältermanagement mit der Anwendung von Computer Vision“) ist ein drittmittelgefördertes Verbundprojekt zur Steigerung der Effizienz von nachhaltigen Mehrwegbehältern. Dies beinhaltet die Optimierung der Bestands-, Prozess und Zustandserkennung und der Integration der gewonnenen Daten in die Prozesse der Prozesspartner. Der Fokus der Forschungsgruppe liegt dabei auf drei Bereichen

  • Es soll ein Deep Learning Modell zur visuellen Objekterkennung von Mehrwegbehälter in der Logistik eingesetzt werden, dessen Ergebnisse in Form der Bilderkennungsdaten für die laufenden Geschäftsprozesse der Kooperationspartner genutzt werden.
  • Es soll auf Basis unternehmensübergreifender Trackingdaten eine übergreifende Datenanalyse zur gesamten Supply Chain erfolgen und so eine Blaupause für das Monitoring von Mehrwegbehälterkreisläufen geschaffen werden.
  • Darüber hinaus sollen die unterschiedlichen Datenquellen dazu genutzt werden, einen mittelstandsgerechten Planungsansatz zur Reihenfolgeplanung von Behältersortier- und reinigungsvorgängen zu entwickeln und prototypisch anzuwenden.

Die Kooperation der FHWS mit drei Unternehmen aus der Logistikbranche aus dem Freistaat Bayern hebt die Nachfrage und Aktualität dieses Projektes hervor und verhilft den zu entwickelnden Lösungsweg durch vorhandene Use-Cases an die Praxis anzupassen. Die Herausforderung und den dadurch entstehenden wissenschaftlichen Anspruch an das Projekt besteht darin, dass in allen Bereichen für die Praxispartner mittelfristig nutzbare Lösungen geschaffen werden.
Die Ergebnisse führen zu einem effizienteren Mehrwegbehältermanagement, das die Attraktivität des Mehrwegbehälters als Alternative zu Einwegladungsträgern im Sinne der Nachhaltigkeit steigert.

Kooperationspartner/Förderer

FHWS, sprintBOX GmbH, Lobster DATA GmbH, TAF INDUSTRIESYSTEME GmbH
/ Förderer: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie
/ Projektträger: VDI VDE IT

Ansprechpartner

Prof. Dr. Alexander Dobhan (FWI, Projektleitung), Prof. Dr. Martin Storath (FANG)

Zeitraum

Start 01.01.2022, Ende 30.12.2024