Forschungsprojekte

OBerA - Optimierung von Prozessen und Werkzeugmaschinen

Inhalt

Optimierung von Prozessen und Werkzeugmaschinen durch Bereitstellung, Analyse und Soll-Ist-Vergleich von Produktionsdaten (OBerA), Forschungsinitiative vom Freistaat Bayern für mittelständische Unternehmen um sie bei der Digitalisierung zu unterstützen. Das Projekt ist sehr praxisnah angelegt und stellt eine übergreifende Kooperation von fünf mittelständischen Produzenten, zwei Maschinenbetreibern, einem ERP-Spezialhaus und der Fachhochschule da. Das primäre Ziel ist es einen Leitfaden für den bayrischen Mittelstand zu entwickeln. Hierzu werden die dringlichsten Probleme der Projektpartner hinsichtlich der Digitalisierung bearbeitet, diese Use-Cases und ihre Lösung werden wissenschaftlich aufbereitet und ergeben später den Leitfaden als Lösungswege der Praxis. Die Ergebnisse sollen anderen mittelständischen Firmen helfen einen praktikablen Einstieg in das Thema Digitalisierung zu erreichen und die gezeigten Lösungswege im eigenen Unternehmen erfolgreich umzusetzen.

Kooperationspartner/Förderer

FHWS, Siemens AG, Kritzner Metalltechnik GmbH, Pabst Kombonentenfertigung GmbH, Franken GmbH & Co. KG, Heisab GmbH, Heitec AG /Förderer: Bayrisches Staatsministerium für Wirtschaft, Energie und Technologie / Projektträger VDI VDE IT

Ansprechpartner

Prof. Dr. Hartmann

Zeitraum

Start 01.04.2018, geplantes Ende 01.04.2021

Effizienzsteigerung von automatisierten Produktionslinien durch optimierende Simulationsmodelle und –methoden

Inhalt

Im Bereich der vollautomatisierten Fertigung von Einspritzdüsen wurde in Zusammenarbeit mit der Firma Bosch ein sechs Monte dauerndes Projekt durchgeführt, das die Optimierung durch datengestützte vorausschauende Instandhaltung (predictive maintenance) und vorausschauende Fehlervermeidung (predictive quality management) zum Inhalt hatte. Durch den Einsatz von On the Edge-Verfahren aus den Bereichen des Machine Learnings und der künstlichen Intelligenz konnten so die operativen Prozesse auf Basis der Analyse von Echtzeitdaten nachhaltig verbessert werden.

Kooperationspartner/Förderer

Fa. Bosch

Ansprechpartner

Prof. Dr. Kurt Schwindl

Jahr des Abschlusses

2018

Weitere Informationen

Artikel in der Mainpost vom 28. Juli 2015

 

Digitalisierung in der nachhaltigen Behälteraufbereitung (DIBCO)

Inhalt

Mehrwegbehälter sind ein wichtiger Baustein für eine nachhaltige Industrieproduktion. Sie durchgehen einen ähnlichen Zyklus wie haushaltsübliche Mehrwegflaschen: Spezielle Anlagen bereiten gebrauchte Boxen oder Container so auf, dass sie wiederverwendet werden können. Der Aufbereitungsprozess ist bisher nur in Ansätzen automatisiert. Das Projekt DIBCO („Digitales Behältermanagement mit der Anwendung von Computer Vision“) ist ein drittmittelgefördertes Verbundprojekt zur Steigerung der Effizienz von nachhaltigen Mehrwegbehältern. Dies beinhaltet die Optimierung der Bestands-, Prozess und Zustandserkennung und der Integration der gewonnenen Daten in die Prozesse der Prozesspartner. Der Fokus der Forschungsgruppe liegt dabei auf drei Bereichen

  • Es soll ein Deep Learning Modell zur visuellen Objekterkennung von Mehrwegbehälter in der Logistik eingesetzt werden, dessen Ergebnisse in Form der Bilderkennungsdaten für die laufenden Geschäftsprozesse der Kooperationspartner genutzt werden.
  • Es soll auf Basis unternehmensübergreifender Trackingdaten eine übergreifende Datenanalyse zur gesamten Supply Chain erfolgen und so eine Blaupause für das Monitoring von Mehrwegbehälterkreisläufen geschaffen werden.
  • Darüber hinaus sollen die unterschiedlichen Datenquellen dazu genutzt werden, einen mittelstandsgerechten Planungsansatz zur Reihenfolgeplanung von Behältersortier- und reinigungsvorgängen zu entwickeln und prototypisch anzuwenden.

Die Kooperation der FHWS mit drei Unternehmen aus der Logistikbranche aus dem Freistaat Bayern hebt die Nachfrage und Aktualität dieses Projektes hervor und verhilft den zu entwickelnden Lösungsweg durch vorhandene Use-Cases an die Praxis anzupassen. Die Herausforderung und den dadurch entstehenden wissenschaftlichen Anspruch an das Projekt besteht darin, dass in allen Bereichen für die Praxispartner mittelfristig nutzbare Lösungen geschaffen werden.
Die Ergebnisse führen zu einem effizienteren Mehrwegbehältermanagement, das die Attraktivität des Mehrwegbehälters als Alternative zu Einwegladungsträgern im Sinne der Nachhaltigkeit steigert.

Kooperationspartner/Förderer

FHWS, sprintBOX GmbH, Lobster DATA GmbH, TAF INDUSTRIESYSTEME GmbH
/ Förderer: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie
/ Projektträger: VDI VDE IT

Ansprechpartner

Prof. Dr. Alexander Dobhan (FWI, Projektleitung), Prof. Dr. Martin Storath (FANG)

Zeitraum

Start 01.01.2022, Ende 30.12.2024